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AFOSR Interim Technical Report
Contract # AFOSR 81-0020
January 31, 1983

The following summary is a progress report for the research

currently carried out under AFOSR Contract #AFOSR 81-0020. The

areas covered in this. report are 1) mathematical theory of turbu-

lent fluctuations of a plasma near thermal equilibrium, 2) the

theory of non-linear thermal and diffusive waves in finite mass

and reacting media, 3) the development of algorithms for the Helm-

holtz equation, 4) progress in the development of theory for Queer

Differential Equations, 5) spectral theory of non-elliptic operators.

1. a) The Mathematical Theory of Turbulent Fluctuations of a
Plasma Near Thermal Equiiibrium

This work is being carried out by Eli Hameiri and K. Riedel

and is a continuation of the research initiated during the pre-

vious contract year under AFOSR Contract #AFOSR 81-0020.

Fluctuations in plasmas are the rule rather than the excep-

tion. Strong evidence has been found in space and solar plasma

studies. A well known problem involving MHD-fluid turbulence

is found in the radar discriminations of the trailing wake of a

re-entry vehicle. A brief description of our previous work is

given followed by a discussion of the latest results.

We have constructed a model of fluctuating MHD fluid com-

pressible plasma near thermal equilibrium. Moreover, the thermal

equilibrium state is a force-free state. A fluid model already

exists due to Landau and is based on adding small "noise" terms

to the usual equations which are then linearized. In contrast, A
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our approach has not involved extra terms and is fully non-linear.

The two models generally agree in the limit of small fluctuations.

Our treatment is based on discretization of the MHD equations,

replacing them by their spatial finite-difference approximation

over an equally spaced grid, where for simplicity the plasma do-

main is taken to be a periodic cubic box. Thus we have a system

of evolution equations for grid-valued functions. Different

representations of the plasma variables (e.g., momentum rather

than velocity) do not yield equivalent discrete systems. We

choose the variables which are used when writing the MHD equations

in conservation law form. We find that the discrete system con-

serves a discrete form of the helicity JA.B (B = curlA). More-

over, A Liouville theorem holds for the flow in the phase space

of the grid values of the plasma variables. This property is

used to construct a Gibbs distribution function for the variables,

based on the various constants of the motion, in analogy with

statistical mechanics. The distribution function enables us to

calculate equal-time correlation of plasma variables at different
locations. We get agreement with results for magnetic field

fluctuations which were known for incompressible plasmas, as

well as with known results for classical fluids.

More recently we have constructed the two-time correlations

for the model. For this it was necessary to add dissipation

and random driving forces to the original equations of motion.

We postulate a fluctuation-dissipation theorem for the random
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forces. As a first step we have treated the linearized evolution

equations with small fluctuations. Zn this case the fluctuation

distribution become Gaussian. Our finite difference scheme

transforms the evolution equations into a constant coefficient

stochastic differential equation. The Fourier modes decouple

and yield simple forms for second moments or correlations. We

are currently examining Hilbert space settings for the distri-

butions to settle convergence properties.

b) A parallel effort in the study of Stochastic Fluctuations
and Their Effect on MHD Waves, began during 1981 has been
concluded and we mention here the significant results. This
work was carried out by W. Grossmann.

We have investigated the effects of stochastic fluctuations

on the propagation of waves in an MHD or plasma medium. For

the particular choice of fluctuation background depending only

on time but spatially independent ideal MHD waves propagating

through an infinite uniform medium have been studied. The

stochastic fluctuations are assumed to satisfy the time de-

pendent equilibrium equations of ideal MHD with the further

assumption that the response of the equilibrium due to the

fluctuations takes place on a time scale much longer than

characteristic times associated with MHD waves. Linearization

of the governing equations leads to stochastic differential

equations for the scattered waves. We have extended a technique

due to Keller and Papanicolaou to solve for the coherent part

of the wave resulting in stochastic corrections to the dispersion

/
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j relation for the Alfven and magnetoacoustic signal speeds.

Depending on the statistics of the fluctuation background which

are assumed known through the power spectrum the waves may be-

come destabilized-by the noise. Thermal fluctuations with a

white noise spectrum lead to stable wave motion with the wave

speed decreased due to scattering. This work which was begun

under AFOSR Contract #AFOSR 81-0020 will be continued in colla-

boration with G. Papanicolaou and H. Grad under separate funding.

2. Considerable progress has been made in the n'athematical under-
standing of non-linear diffusion in inhomogeneous, finite-mass
and reacting systems, these problems were begun during 1979-80,
reported on in our AFOSR renewal proposal, June 24, 1981 and
May 1982. We present below results from significant parts of
this research. This work was carried out by P. Rosenau.

a) Non-linear Diffusion in a Finite Mass Medium

- Here we are concerned with the solutions of the heat equa-

tion in an inhomogeneous medium:

(la)3u =3
2A(u)

(lb) u(X,0) =Uo(),

in R1 x [0,m) subject to the constraints that the total mass m

of the medium and the initial energy E are finite, i.e.,

(2) m = (~X-

(3) E= _u°(x)P(x)dx<-.
f -. /

It is assumed that P(X) is a positive smooth function and A(u)

I /
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satisfies

(4) AM0 0, A'(0)>0 and A'(u)>0, if u>0

which, in particular includes the case: A(u)=un , nal.

With u being the temperature and p(X) the particle density,

we are thus concerned with thermal phenomena in an unbounded

medium but of a finite mass. We show it is exactly this pro-

perty that causes a remarkable change in the nature of the ther-

mal diffusion as compared with diffusion in a medium of infinite

mass.

Thermal phenomena in inhomogeneous ambience are of interest

in a variety of situations, e.g., extraterrestrial situations

where the response to an impulsively initiated blast takes ini-

tially the form of a supersonic wave wh.le the medium is qui-

escent. It 4s only in a later stage when the wave slows down

to the sonic range that the gas is set into motion.

Previously, we have considered the Cauchy problem in an

inhomogeneous medium wherein A(u) = un and p(x)'6jIXI - , 0<<!, as

IXI- (thus (2) does not hold!). It was then possible to prove

that certain solutions, i.e., the similarity solutions that

describe a propagating thermal wave, are asymptotic to the gen-

44 4eral Cauchy problem provided that the two share the same initial

energy and the asymptotic distribution of the density is the

same (i.e., the same Z). Though, as L is varied, 0£<1, the

asymptotic solution varies as well, the change is continuous

and the solutions remain similar to each other. Thus the problem

i /
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of propagation in a homogeneous medium, 1=0, may be considered

as a particular case. However, for 1>1 the similarity solution

explodes and thus it cannot be used to represent in any sense

the general Cauchy problem. This in turn signals that whenever

L>1, or, as we shall find, more generally--whenever the condi-

tion (2) holds, thermal diffusion will be different. The

analysis of this case is carried out in the present work.

Simply stated, the main result ensurcs the isothermaliza-

tion of the medium to a positive average temperature.

Such a result would be natural in a finite domain with

homogeneous Neumann condition. Here it is derived for a Cauchy

problem. It is of course drastically different from diffusion

in a homogeneous medium or any infinite inhomogeneous mass

medium, where the average temperature is zero. In a standard

diffusion problem the first non-vanishing term describes the

decay to "average" zero of the thermal pulse. On the other

hand, in our case the calculation of how this average is ap-

proached constitutes the second term in an appropriate asymp-

totic expansion. We plan to report on this in the near future.
4

One should, however, distinguish between the approach to

the average temperature 5 at a given point and the behavior at

infinity. WThether the isothermalization of the whole space

takes a finite or infinite time still remains to be answered.

Note that the possibility that arbitrarily far particles have

a finite temperature is physically plausible. Because there

J
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are so few of them all the energy contained in the tail is

negligible.

There is another difference between the diffusion in the

present case and in infinite mass medium that is worth men-
tioning. In a finite mass medium, inasmuch as the initial

energy and the mass is finite, not only the local density dis-

tribution but also the actual form of A(u) hardly matters for

the validity of our results. On the other hand, diffusion in

an infinite mass medium depends not only on the explicit form

of A(u), but the details of the density distribution at in-

finity must be known and they affect the propagation pattern.

Moreover, unless the density field was of monomial form, noth-

ing could be said about the asymptotic pattern of propagation.

b) Nonlinear Thermal Wave in a Reacting Medium

Here, we consider a model problem for the expansion of an
instantaneous heat source in a medium in which there is volum-

etric heating and absorption. Thermal conductivity, thermal

sinks and sources are all assumed to be temperature dependent.

Such conditions occur in many physical situations. Our interest

I stems from thermal waves in a heated plasma with losses caused
a

by bremsstrahlung radiation. The model equation (1) may be used

to describe the motion of a polytropic gas in a porous medium
with appropriate interpretation given to the source and sink

terms.

--44° 
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Our model equation in slab symmetry reads

au 3 pau ua
TE = up W + hu Yua)

where h(t) O and y(t)>O are known functions of time.

In the bulk of our work, the family of solutions (p,a,q)

will be narrowed to a special one-parameter family (p,l,l-p) i.e.,

q=l-p, a=l. (lb)

that has the merit of being explicitly solvable.

The simple linear source term is analytically tractable.

Note that by reversing the sign of h and y, one obtains a linear

absorption and a non-linear heating source.

We consider a Cauchy problem in R x(O,-) with

u(X,0) = Eo6(X), (2)

where E is the initial energy and 6 is the Dirac measure. If

y=h=O, one obtains a thermal wave that propagates with a finite

speed. The addition of absorption may completely change the

pattern of the thermal evolution. Thus, if p.<q+l the thermal

wave becomes localized and penetrates only to a finite depth.

If, in addition, q<l, the pulse has a finite life time t,<-

and is thereafter extinguished in the context of the problem

considered wherein q=l-p, using the results due to Kershner.

Martinson has solved problem (1) and (2) under the assumptionI that h-0 and y=const.>O. In addition to the aforementioned

features it is found that the wave reverses its motion and

thereafter shrinks to zero. In our work, this problem is

I
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generalized by adding a linear heating source and allowing y
and h, the coefficients of heating and absorption, to be time

dependent.

The addition of even a simple heating source like the one
considered here may have both qualitative and quantitative in-
fluence on the thermal evolution. We study two cases with y
and h being constant. y and h are assumed to be time depen-

dent. In particular, it is shown that if y oscillates, so does
the wave front. Under certain conditions these oscillations

may cause the extinction of the thermal wave.

A very different class of thermal waves is finally con-

sidered. Here instead of constraints (lb) we require q<min

(a,p+l) and construct a stationary thermal wave that is self

confined in a finite domain.

c) Non-Linear Thermal Evolution in an inhomogeneous Medium

Various simple transport models of electron temperature

in inhomogeneous plasmas are reducible to the quasilinear

equation p(x)ut = [c(x)un] + A(X)u s , - l<X<l,u(±l)=O. u is the
temperature, P(X) the density, and c=g[p(X)] the density-dependent

part of the thermal diffusion. P(X) and c(X) may vanish at the

plasma edge, rendering the problem singular. The temporal be-
havior depends critically on the boundedness of R = +1  (x) dX.

If R<- then in the absence of heat sources, ASO, every initially

given state u(x,O) evolves toward an algebraically decaying,

/1
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universal space-time separable solution. Its existence and

uniqueness is proved. The method developed in this work may

be used to show the equilibration of the solution in the

presence of a heat source ofthe form A(x)uSs<n,p(X)>O. On

the other hand, if R = = and A = 0 then the system becomes.
isothermalized: u-o' ulx,0)P(X)dX>0. In such a case a(

-i

tion of heat sources will cause a thermal explosicn.

3. The Development of algorithms for the Helmholtz equation i!
one important area of our general interest in the developme
of computational methods and algorithms for PDE's of important
physical problems. We report below on two projects, begun
earlier, where significant results have recently been obtained.
This work was carried out by A. Bayliss and E. Turkel.

a) The Helmholtz Equation for Nozzles and Underwater Acoustics

This work concerns radiation boundary conditions for
0

Helmholtz type equations in duct-like geometries. A typical

problem would be to solve the equation.

(1.1) a) Au+k2 u=u +u +k2 u=0
XX YY

for a function u(X,y) in the region XS0, 0 y<H. Typical boun-

dary conditions would be

(1.1) b) u(x,O) = 0

c) uy(X,H) = 0

Problems of the form (1.1) arise in many physical applications.

For example, the problem of acoustic waves propagating in a

nozzle is covered by (1.1) in cylindrical coordinates r,z and 8.

A typical domain for axially symmetric waves in a straight pipe

would be 0<rrH, .z>0 (Here z is the axial coordinate and r
/

- -----~ 4
. I I I I



is the distance from the axis). In place of (l.lb and c) some

impedence conditions might be imposed on the duct walls.

If the roles of r and z are switched so that the domain

becomes 0z<H, r)r0 then problem (1.1) describes the propaga-

tion of acoustic waves underwater. In this case z describes

the horizontal distance from some incident field (i.e., a sonar

beam). A dependence on the azimuthal angle 0 is also possible,

although for simplicity we neglect this. An important feature

of this problem is that the sound speed will in general depend

on z, i.e., the k2 u term in (1.1a) will be replaced by a term

of the form k2 n(z)u for some specified function n(z).

Other applications of problem (1.1) include electromagnetic

radiation in a waveguide and the scattering of waves by a

cylindrically confined obstacle. These problems are all con-

nected by the fact that they are posed in a domain which is

infinite in only one dimension. In order to numerically com-

pute such problems one must somehow impose that the solution

*represents radiation propagating outwards or equivalently that

there are no sources located at + - radiating into the region

of interest.

One way to do this is to impose an artificial boundary

at for example X=XI. The problem is then zeduced to one in

the bounded domain O,<X<Xl , 0y.H. However at the artificial

boundary it is necessary to impose some boundary condition.

This boundary condition must simulate outgoing radiation.

I,
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j The problem is similar to one we previously studied.

There the problem of simulating outgoing radiation (i.e., the

Sommerfeld radiation condition) for the fully exterior Helmholtz

equation was considered. A family of local boundary conditions,

i.e., depending only on the derivatives of the solution was

developed. These boundary conditions were based on deriving

differential operators which matched the solution to a Laurent

expansion in the distance from a fixed origin. It was shown

that the higher order members of this family provided very

accurate approximations at artificial boundaries close to the

region of interest.

In duct-like geometries the situation is very different.

This is because there are a discrete number of different waves

(depending on k) which propagate outwards. These waves all

have different wave numbers. There is thus no single radia-

tion condition even at infinity.

A global boundary condition for problem (1.1) was developed

* by Fix. This boundary condition coupled all of the boundary

points using an integral operator. We have introduced a family

of local boundary conditions. In the remainder of our work

these boundary conditions are generalized and their properties

Estudied.

b) An Iterative Method for the Helmholtz Equation

We have developed an iterative method to solve the Helmholtz

equation.

(A u + k(x,y)u = 0,

f * J



1 Iin several geometries and in both two and three dimensions.

An important application of (1.1) is the scattering of

acoustic waves by an obstacle. In this case we consider the

following boundary value problem in the region a exterior to

the surface S of the body

(1.2a) A u + k2 u= 0 in fl,

(1.2b) -= on S,

(1.2c) lim r(T- - iku) 0.r+

Condition (l.2b) is for a hard scatterer. For a soft

scatterer (1.2b) is replaced by a Dirichlet condition. Con-

dition (1.2c) is the Sommerfeld radiation condition in three
dimensions. A similar condition is valid in two dimensions.

Problem (1.2) can be solved by integral equation methods.

In this approach (1.2) is replaced by a Fredholm integral

equation (typically of the second kind) over the surface S.

As k increases, however, the solution becomes more oscillatory

and this method requires the inversion of a large full matrix.

Asymptotic methods can be developed for large values of k. In

practice, many of the features predicted by the asymptotic

methods can be at least qualitatively observed at moderate

frequencies.

Integral equation methods, in addition to requiring the

/inversion of large full matrices, are restricted to constant

/
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j values of k. In this work we will consider the more general

approach of introducing an artificial surface r, for example

the sphere r = rl, which surrounds the surface S. On r it is

necessary to impose an approximation to the radiation condi-

tion (1.2c). The- radiation condition can be either global or

local.

The continuous problem (1.2) is then replaced by a boundary

value problem in a bounded domain. It can therefore be ap-

proximated by some standard discretization method such as

finite differences or finite elements.

The result of any such discretization is a large, linear

system of equations

(1.3) AX =b,

where X approximates the solution to (1.2) and b is determined

by the boundary data. The large, sparse matrix A is difficult

to invert by standard iterative methods since the Hermitian

part of A will often be indefinite.

- The method proposed here is to solve (1.3) by a pre-

conditioned conjugate gradient iteration method. Since the

conjugate gradient (CG) method is not directly applicable to

indefinite, non-selfadjoint problems we shall consider the

normal equations

(1.6) A A X = A b,

* where A is the adjoint of A. The matrix A*A is positive

, definite and therefore the conjugate gradient iterations will

converge.

H i 'I/
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The matrix A*A is highly ill-conditioned and thus the

resulting iterations will converge very slowly. In order to

improve the conditioning of the iteration matrix A*A we will

precondition A by a partial inverse of the discrete approxi-

mation to the Laplacian. Thus, instead of solving (1.6) we

will solve the equivalent system

(1.7) A' A'X' = A' b',

where A' = AQT, = QTx, b' = Q-b andM -  -T-1. The

matrix M- I is a partial inverse of the discrete Laplacian A0.

This preconditioner will be obtained from the splitting A0 =M-R

corresponding to point symmetric successive overrelaxation.

Thus the matrix Q-1 corresponds to SOR. We have shown that

the use of a preconditioner based on the structure of the

equation (i.e., Laplacian plus lower order terms) will dramati-

cally accelerate the convergence of the normal equations. The

resulting algorithm permits solutions to be computedfor practical

grid sizes using a relatively small amount of computer time.

-4. The Theory of Queer Differential Equations (QDE's)

Since 1974, the use of ODE's in the theory of adiabatic

and diffusing plasma media has proved very useful. Numerical

algorithms have been developed which accelerate large diffusion

codes and the convergence properties of the numerical schemes

depend, to a large extent, on as yet incomplete understanding

of the theory of ODE's. Recently, research in the mathematical

/
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nature of QDE's has been pursued by H. Grad, P. Laurence and

E. Stredulinsky. We present here a progress report of this

work.

Queer differential equations are a pseudonym introduced

by Harold Grad for a new class of functional differential equa-

tions which model the slow adiabatic diffusion of a plasma

through a magnetic field. The prototype for such an equation is

A= F(x,V,J,V',i") (1)

where ' denotes differentiation with respect to V the volume

enclosed with level sets of *(X).

Little is known regarding existence, uniqueness and

regularity for such equations except for certain special choices

of F. For instance for the equation,

60 = G(X,V), (2)

under various boundary conditions, existence and regularity of

solutions has been demonstrated by Mossino and Temam. Further,

a linearized version of (1) has been analyzed by Vigfusson.

We consider the model equation:

= -4"(V), (3)

with 1P specified at the boundary and at an interior point.

Our investigations concern existence and regularity for

the above equation in a two dimensional simply connected domain

with the unusual "boundary conditions", p(X) given on 6n,

#*(0 = 0. Here W*(V) is the increasing rearrangement of *(X)

and the second condition is equivalent to specifying the value

-1'
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of #(X) at its absolute minimum, an interior point of 0. An

auxiliary problem which we analyze is the existence and regular-

ity of solutions to the same equation on an annulus with

boundaries F(inner) and r2 (outer) with *(X)=O on rI ,

*(X)-l on r2.

The only known result for this equation is existence of

solutions to a variational problem formulated by Temam which

however does not incorporate the boundary condition 9*(O)=O,

but rather replaces this with the condition P*'(O)=O which

turns out at least formally to be a natural boundary condition.

We have introduced two modified variational principles,

one in the punctured disk Q and one in the annulus A for which

we have proven existence of solutions. As in Temam's case the

passage from a solution to the variational problem to a solu-

tion of the actual problem has not been demonstrated. Similarly

to his case and unlike the situation for weak or variational

formulations of other nonlinear problems, this passage requires

more than proving the regularity of the solution. Information

is needed about the structure of the closure of the set where

* the minimum and maximum of the solution is attained. One step

in the direction of uncovering the nature of this set has been

4 taken by establishing a weak maximum principle for the solution

of the variational problem both in the punctured disk and in

the annulus. That is we have shown that the solution *(X)

satisfies 0<f(X ( in . I

i/
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Furthermore, it is possible to introduce a generalized notion

of capacity which has the property that the minimizer of the

variational problem minimizes this capacity over all families

of level sets partitioning n. We hope to use this notion of

capacity to study further the structure of the level sets of

the minimizer. In particular we seek to explore a connection

with a free boundary value problem solved by Caffarelli in

which he finds the subset of a set Q with given volume of

minimum newtonian capacity and shows the free boundary is C

The generalized notion of capacity also enters Grad's

iteration schemes for solving QDE's so that understanding its

properties should be useful in proving analytically the con-

vergence of such schemes. We should note that t1ei problem is

extremely rich in that there is a large body of literature in

a variety of branches of analysis including isoperimetric in-

equalities and properties of the rearrangement function which

can be carried over to generate useful information regarding it.

A partial result towards proving analytically the con-

vergence of such schemes has been obtained through the estab-

lishing of an L 2 gradient estimate for the equation in the case

of an annulus whose minimum outer radius is larger than one.

This gradient estimate can be used to show existence of weak

solutions to the problem,

= A* "( ,

where V(X) is an independently prescribed volume function whose

II
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level sets are not the same as those of *(X). It uses the

jfact that scaling such equations onto domains of outer radius
one, introduces an £<l in front of the second order operator

on the right hand side of (3).

Furthermore and most recently a norm bound on i*' (V)

for a solution to the variational problems (4) and (5) has.

been achieved.

5. Spectral Theory of Non-Elliptic Operators

This work, carried out by E. Hameiri and P. Laurence,

deals with the spectrum of the linearized ideal magneto-

hydrodynamics MHD equations, as a non-trivial representative

of non-elliptic operators. Most spectral investigations

consider elliptic operators, like the Schr6linger operator,

where the spectrum is typically discrete unless the poten-

tial is singular or the domain is infinite. This is not

true in the non-elliptic case. In view of the important
ramifications of the existence of a continuous spectrum

as the manifestation of many "modes" which may interact

to produce non-reversible absorption of energy or generate

turbulence, it is of considerable interest to understand

the origins, and identify in detail, this part of the

spectrum.

We have found that in the non-elliptic case a contin-

uous spectrum may arise from the presence of waves propaga-

ting along rays which remian confined and never intersect

the boundary. In ideal MHD these rays are simply the mag-

netic field lines and the waves propagating along them are

//
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the Alfven and slow magnetosonic waves. Because the ray

does not impinge on the boundary, it is possible to re-

strict attention to the ray's trajectory and to the quan-

tity transported along it and to view the phenomenon as

a one-dimensional wave propagation problem, similar to a

string, with the global boundary conditions playing no role.

The continuous spectrum was investigated in great

detail in the MHD system. For an axisymmetric configuration

the spectrum is the union of the spectra am of modes with

fixed azimuthal wave number m. Each . consists of a

continuous part, arising from Alfven and slow waves with

a particular polarization, and a discriete part. However,

when all m are considered, the discrete points become

dense and generate additional pieces af continuous spectrum.

These pieces can be found directly without going through

the accumulation process just describeid, by considering

Alfven and slow waves with various poLarizations which I
are not axisymmetric.

A rather remarkable phenomenon associated with having

a continuous spectrum composed of dense eigenvalues is

that different spectra may be seen frcmn different rotating

frames. A person rotating with frequency n in the

6-direction measures the azimuthal ang2e e'=e-9t, so that

a wave exp i(me-wt) is seen as exp i (unn'-w't), with the

spectrum of frequencies wtransformed imto w'=w-m2. If w(m)

/
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accumulate as m- then w(m) * *, thus different accumula-

tion points will be observed in different frames. We found

that the most interesting continuous spectrum is generally

seen from a moving frame different from the laboratory frame.

f I
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